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A Floquet theory is presented for the stability of boundary layer flows. The spec-
trum of the governing differential operator is partially discrete and partially con-
tinuous, which is different from confined flows. However, no instabilities appear
from the continuous part of the spectrum. @ 1984 Academic Press, Inc.

1. INTRODUCTION

Much work is still being performed related to the instability of boundary
layer flows; this is because of the extent of agreement between experiment
and theory, even linearized theory [1]. Most theories have been concerned
with a time-independent basic state. The logical next step is when the basic
state may be time-periodic. The classic “Stokes layer” is the earliest exam-
ple, but like plane Couette flow in the (bounded) steady case, it is not
typical of its class as a whole, in that no instability is predicted by the
linear theory [2]. A more representative flow has been handled recently by
von Kerczek [3]. The techniques he used there are also being applied to
the oscillatory asymptotic suction profile [4].

The concern of the present work is to justify a Floguet representation
which most authors invoke when they study instabilities of periodic boun-
dary layers. Furthermore, many of the modern theories of nonlinear
instability use a Floquet representation as a means of understanding bifur-
cating periodic solutions of the equations governing instability [3,
Chap. IT]. For these two reasons then it is expedient to see under what
conditions a Floquet representation might be valid. The governing
equation is a parabolic partial differential equation, which is most con-
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veniently written as a temporally inhomogeneous periodic evolution
equation

M%?+Q¢=P(t)d5, (1.1)

where

P(t+2n)= P(1).

The operators M, @, P are differential operators in space. When P is
independent of time the problem may be reduced by the normal mode
approach to an ordinary differential equation eigenvalue problem.
Problems similar to (1.1) have been studied under different conditions. For
the purposes here, two relevant works are the dissertation by Gould [6]
and the lecture notes by Henry [7]. Those authors do not consider
explicitly what phenomena will occur if the spatial interval is unbounded
(boundary layers). Thus their works apply most directly to “confined”
oscillatory flows.

In any case it is desirable to know under what conditions solutions of
(1.1) of the form

& =ec¢ (12)

will exist, where ¢ is to be time-periodic of period 2z. It is proved that the
existence of Floquet solutions (1.2) depend on the spectrum of the (boun-
ded) period map U(t) of (1.1). (The period map is a special type of
evolution operator usually defined for inmitial value problems. A Floquet
problem is a boundary value problem in time, however.) The spectrum of
the period map will, in general, consist of a point spectrum, i.e., eigenvalues
and a continuous or essential spectrum as in the steady case [8]. With an
eye towards applications to the asymptotic suction profile, the boundary
layer will be allowed to have a (steady) transverse component at infinity.
So, in this work, the oscillatory behavior will be confined to the streamwise
direction. This excludes problems such as that of Kelly [10], with
oscillatory suction.

2. THE GOVERNING EQUATION

The differential operators M, Q, P in (1.1) are normally defined on a
Hilbert space such as %[0, o). The function @ is a map from £ into the
Hilbert space.
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First the operators are given explicitly,

QP =qP={R (D’ —o®)’ + [v(y}(—D*+*)+v"(y)] D} &,
& edmn Q, (2.1)

P(t) D= p®= —ia[u(y, )(~D*+a>)+u"(y, t)] D,
®edmn P(1), (2.2)

M®=md=(—D*+a2) &,
dedmn M. (23)

The domains are specified in what follows.

Here D and prime denote y derivatives. The constants are a >0 (wave
number) and R >0 (Reynolds number). The coefficients u(y, ¢) and o(y)
are the x and y components of the basic state defined on [0, c0)x
(— o0, 00). As they are written, they are required to have second derivatives
in y. This is not a crucial restriction since either pseudo-derivatives may be
introduced or generalized functions may be used. However u(y, t) must be
Hélder continuous in ¢ on any closed bounded interval. It is assumed that

lim u(y, t)=uq+u,e", —o0 < t< o, (2.4a)
lim o(y)=uv,. (2.4b)

The (finite) constants u,, u;, and v, characterize the free stream values of
u(y, t) and v(y). By convention we take u,>0 and consider the physically
interesting case v, < 0. It is also required that

lim |u"(y, t)| =0, —w<t< oo, (2.5a)
_lim lv"(y)l =0. (2.5b)

Certain integrability conditions ensure the spectral resolution of the
problem. These conditions, which follow, are met in all physically realistic
flows. Suppose that

A z+1 . z+1
Bm [ ) —uo—we P dy=lim [ (3, 01 dy =0,
—w<t<oo, (2.6a)
. z+1 . z+1
lim [*° o(y)—voldy=lim [ "(p)?dy=0,  (26b)

(u(y, ) ~ug—uye),  (v(y)—vo), w'(y,¢), and  v"(y)
(2.7)
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are all Lebesgue integrable in y from 0 to oo for every ¢, —oo <t< 0. In
fact, for most boundary layer flows the four functions in (2.7) are of
negative exponential order as y-» co. For example, for the oscillatory
asymptotic suction profile [9, p. 3971,

u(y, )=ug(l —e ")+ u (1 —e %) e,
where k£ is a complex constant (Re & > 0) and v(y) =1, <0.

It has been pointed out previously [8] that when v,#0, the proper
Hilbert space is not %[0, o), but a subspace of functions with sufficiently
rapid decay at infinity. Thus set ¥(y)= R {” v(n)/2 dn and let the Hilbert
space be

Ho={P|e "de L[0, )} (2.8a)

The inner product on 54 is for @, € #;,

Wpy=["e b 20 dy (2:8b)

The operator M is given by (2.3) on its domain, when considered in
#[0, 00):

dmn M = {®Pe %[0, )| ®, & absolutely continuous,
mée Z[0, o), (0)=&'(0)=0}. (2.9a)

To avoid introducing more notation than is actually needed, M denotes the
same operator in %[0, c0) and on the subspace ;. Moreover, M has a
certain property which is noteworthy; it is positive. This is easy to show on
L0, 0): for @edmn M, &#0,

(M®, 5 = f: [1012 + a2 |®|2] dy > a® | ®]2> 0. (2.9b)

Though M is positive on %[0, o), it has no everywhere defined inverse.
Nevertheless, the generalized inverse [14] M' may be defined as the
integral operator whose kernel g'(y, &) satisfies

62
(— 5y—2-+a2> g O=3ry~8)—gA»¢) (2.10a)

1 a t
20,6 =250, 5)=0.¢", & e %10, ), (2.10b)
oy dy
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where g ,(y, &) is the kernel of the projection operator onto the null space
of M*:

I9) =] 80 &) $() . (211)
Now
M*¢=mp=(—D*+o*)¢, PedmnM*, (2.12a)
dmn M* = {¢ € £[0, ) | ¢, ¢’ absolutely continuous, m¢ € %[0, o) }.
(2.12b)

The null space of M*, nul M*, is spanned by ¢ ~*, so that

['s) —1
gy, f)=e_°’yD0 e‘z“ydy] e =200+,

The generalized inverse has the properties

MM =1-J
and

MM=1,

since nul M is empty. The kernel is

ey =8l _ oy +)

g’ &)= > —ye—arT o), (2.13)

Define
Mo=Z (2.14a)

so that
d=M'Z (2.14b)

With these definitions the evolution equation (1.1) is equivalent to

dZ

E+AZ=B(t) Z, (2.15a)
where

QP=0M'Z=AZ, (2.15b)

P(t) &= P(1) M'Z=B(1) Z. (2.15¢)
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The domains of the operators in (2.15) are determined next. Suppose
fenul M*, then by (2.14)

Z,f>={M®, [)=LD, M*f>=0.
Thus Z 1 nul M*, and this is the required boundary condition for (2.15b):

[" 2)e» ay=0
0
Conversely the domain of 4 is defined as

dmn 4= {Z € M, | Z, Z' absolutely continuous,
0

qMTZe.;f;,,f e~ vZ(y) dy=0}. (2.16)

From (2.15c) and (2.2)

B(t) Z=P(t)M'Z= —ia[u(y, )(—D*+a2)+u"(p, )] M'Z
= —ia[u(l— )+ u'M'1 Z= —ia[u+u'M'1Z (2.17)

with (2.14b). Hence, since M'is a bounded operator, B(t) is a bounded
operator with domain independent of 1, so it is sufficient to take
dmn B(t) = s nrng M. Note that because of the assumed conditions on u
and u” as functions of ¢, B(¢) is Holder continuous for each ¢ in any closed
subinterval of R. It is also important that 4 is a sectorial operator in the
following sense.

DerinTION 2.1 [7, p. 18].  An operator A in a Hilbert space o is a sec-
torial operator if it is a closed, densely defined operator such that, for some
8 in (0, n/2), for some C > 1 and real a, the sector

Agg=1{A10 £ |arg(A—a)| < 7, A#a} (2.18a)
is in the resolvent set of 4 and
I(A=4)" £ C/lA—a| for all Ae A,,. (2.18b)

The explicit demonstration that 4 (2.15b), (2.16) is sectorial is provided
in the Appendix. With that proviso, the following existence theorem is
applicable to (2.15a).

THEOREM 2.2 [7, p- 190]. Suppose A is a sectorial operator in # and
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B(t) with dmn B(t)=dmn A* is a bounded linear operator on H# for each ¢
in ty<t<ty (—o0 <ty<t;<w), for some 0<a<1 (dmn A°=#), and
that t — B(t), is Hélder continuous on [ty,t,].

For any ®yeH there exists a unigue solution @(t)=d(t;1, y) of
(2.15a),

and @, — &(t; 1, D) is linear and bounded in #, so we write
D(t; 1, Dy)y=T(1, 1) Dy, 21 (2.20)

This family of evolution operators {T(t, 1), to<T<t<1t,} has the following
properties:

@) T(r,0)=LT{t,s)T(s,7)=T(t,1) if t=s271;

(b) {T(t,7), t=71} is strongly continuous in (1, t) with values in the
space of all bounded linear operators dmn A —dmn A® for any 0< < 1.

(Two other conclusions are not presented here.)

This theorem of Henry asserts the existence of a solution to the initial-
value problem. The application to periodic linear systems follows in the
next section.

3. FLOQUET THEORY

The Floquet theory is concerned with solutions of (2.15a) when B(t) =
B(t + 2m) is periodic.

DEeFINITION 3.1 [7, p. 148]. The period map (Poincaré map) is
U(t)y=T(t + 2=, 1), (3.1)

where T(t, 1) is defined in Theorem 2.2. The nonzero eigenvalues of U(¢)
are called characteristic multipliers.

Besides the eigenvalues of U(¢) one allows for the possibility that the
spectrum ¢(U(¢)) may have a continuous part. In particular there may be
an essential spectrum.

DErFINITION 3.2. The resolvent set p(U(t)} is the set of complex numbers
A such that (U(¢) — A) ! exists and is bounded. Otherwise 1 e a(U(?)), the
spectrum of U(t). The essential spectrum, o,(U(t)), is the set of complex
numbers A (possibly depending on #) such that the range, mg(U(¢) — 1), is

640/42/4-7
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not closed. It is clear from Definition 3.1 that since B(#) is periodic, with
Theorem 2.2, U(t+ 2zn)= U(¢) for all 1.

LemMa 3.3 [7, p. 197]). The characteristic multipliers are independent of
time, i.e., the nonzero eigenvalues of U(t) coincide with those of U(t). In fact,
a(U(t)N\{0} is independent of t.

We turn next to a natural alternative formulation of the problem, one
which is in some ways computationally simpler.

Let L be the partial differential operator defined on 2 = [0, c0) x [0, 2]
by

Lo=Ig(y, )= —m 04(y, 1)/ot—(q—p) $(»: 1), (32)

#edmn L, where m, g, and p are given by (2.1)-(2.3). Let g'(y, ¢) be as
defined in the last section. Define

{=mg¢ (3.3a)
so that
=] 'O N, (3.3b)
and
(SO 0=1[" g0, ) U D de= (), 1) (34)
=L ["4-nerouEnd  tedms
t 0

The domain of S can be specified when the proper Hilbert space setting is
introduced. Analogous to (2.8a) define

Ho(2)={p]e”"Vpe £(Q)} (3.5a)
and take the inner product to be for ¢, ¥ € #¢:

=[] e 00,0 . (3.5)

Thus the domain of S is

dmn S = {{ e # () | {, 8/0y absolutely continuous, s{ € #;} (3.6)

The next objective is to relate the two formulations of the problem. (It
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has not been explicitly demonstrated here but the period map U(t) has the
representation

U(t) ®(y, t)=L F(y, t+2m, ¢, 1) D¢, 1) dE, (3.7)
where F(y, t, &, t) is the Green’s function for the initial-value problem for
(3.2) [6]1)

LEMMA 34 [Cf. 6, p.47]. A complex number u+0 is an eigenvalue of
U(0) if and only if the equation

Lo =AM¢ (3.8)

has a nonzero (2n-periodic) solution, where y=e*™*. That is, pe ¢ ,(U(0)), p
is in the point spectrum of U(0), if and only if A€o ,(L, M), A is in the point
M-spectrum of L.

Proof. From Theorem 2.2 and Definition 3.1, for all & e dmn U(z),
D(y, 1+ 2n)=U(t) D(y, 1). (3.9)
If ueo,(U(0)), then for some @ e dmn U(z),

U(0) @(y, 0) = P(y, 2r) = pP(y, 0), (3.10)
and /¢ =0.
Let ¢ be a solution of (3.8). Set ®(y, t)=e*d(y, t); then
16 = — e (m@) + e¥(Ig) = e*(— Am + 1) = 0. (3.11)

Also, since ¢ is a solution of (3.8), ¢ is periodic while
uP(y, 0)= ug(y, 0) = ug(y, 2m) = pe = &(y, 2n) = B(y, 2m), (3.12)

so that u is an eigenvalue of U(0).
Conversely, let u be an eigenvalue of U(0). Then there exists a &(y, 1)
satisfying /& =0 and u®(y, 0) = D(y, 2n). Now define
d(y, t)=e Y d(y, 1), where e =p
Then
lp = Ae = *m + e ~*(ID),
S0
Ip—Ae *md=e i
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or
(I—Aim)¢=0.

Also ¢(y, t) is periodic in ¢
¢(y, 0)=B(y, 0) =;lz D(p, 2m) = e*e 2" ¢(y, 2m) = §(y, 2r). (3.13)

Hence Lg=/iM¢. |

DeFINiON 3.5 [Cf. 9, p.1393). The essential M-spectrum of L,
a.(L, M) is the set of complex numbers A such that mg(L — AM) is not
closed. For the formal differential operators / and m in (3.2) and (2.3),

o.(l, m) is the essential spectrum of the minimal operator corresponding to
[—im.

LEMMA 3.6. A complex number L€ (I, m), if and only if 0e o (I, m).

Proof. By Definition 3.4, if Oea,(l, m), the rng/ is not closed. Let
{¢,} edmn!/cdmnm, such that ¢, 4, and suppose that for some 4,
mg(!/— Am) is closed; then (/—im)¢,— (I—im)¢. Define D, (y,1)=
e gy, 1) = e P(y,t) = D(y,1). Then Ib, = —le*mg, + e*lp, =
e*(l—Am) ¢, — e*(I— Am) ¢ = I®. Thus [ has closed range.

Suppose on the other hand that / has closed range. Consider
&,edmn/cdmnm such that @,— &. Define ¢,(y, t)=e D, (y, 1)~
e Md=¢(y,t). Then (I—im)¢,=e *I®,— e b= (I—Am) ¢, since [
has closed range. Thus rng(/— Am) is closed.

If neither rng/ nor rng(/— Am) is closed neither is the other. Thus if
o.(l, m) is not empty, Oeo, (/,m). 1

LeMMA 3.7. A complex number Aea(L, M) if and only if uea(U(t)),
where p=e*™*, yu+#0. Furthermore, A€ a (L, M) if and only if uea (U(1)).

Proof. 1f problem (3.10) is restated as

d¢

M5

+(Q—P(t)) ¢+ iM¢ =0, (3.14)
with P(t+2rm)= P(t), then as (1.1) is transformed to (2.15a) to (3.14) is
transformed to

¢

E+(A—B(t))€+l{=0, (3.15)

where B(t+ 2n) = B(?).
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The Cauchy problem for (3.17) is uniformly correct [12, p. 192] if

(a) it has a unique solution (7,(¢, t) is invertible),
(b) {(¢) and {'(z) are continuous,

(c) T,(t 1) has closed range, where T',(¢, 1) is the evolution operator
for (3.15).

It is also true that [12, p. 194] the Cauchy problem for (2.15a) is uniformly
correct if and only if the Cauchy problem for (3.15) is uniformly correct.

The purpose of the transformations is that if Z=e*{ then the period
map for (3.15) is

Uy(t)=Ty(t+2m, t) = e~ T(t + 21, t) = e~ ™ U(2). (3.16)

(The existence of a periodic solution of (3.15), {(¢+ 2n)={(¢), means that
1ea,(U,(t)).) Suppose ue p(U(t)). Then from (3.16),

(U ~p)~ " =e HUy(t)— pe ) ™! (3.17)

and pe ~*ep(U,(t)). The converse is obviously true. Consequently
uea(U(t)) if and only if ye ~2** e a(U,(t)). The Cauchy problem for (3.15)
is not uniformly correct if 1€ o(L, M). Condition (a) means A¢ o(L, M) if
and only if péo,(U(t)). From Definition 3.4 condition (¢) means
A¢o (L, M)if and only if u¢ o (U(1)). |

The identifications made in Lemmas 3.3 and 3.7 indicate that there is a
1:1 correspondence between the spectral points of U(r) and those of
(L, M). This is important because most of the proven results concern the
spectrum of U(r) while the spectrum o(L, M) can be more easily deter-
mined.

DEerINITION 3.8 [7, p. 30]. If 4 is an operator with domain and range in
a Hilbert space #, and o(4) denotes the spectrum, a set ¢,=
6(A)u {0} =8(A) is a spectral set if both ¢,and ¢(A)\c are closed in the
extended plane Cu {0 }.

THEOREM 3.9 [7, p. 198]. Suppose o, is a spectral set for a(U(t)) for all
t; the usual case is when o is a finite collection of isolated eigenvalues, or the
complement of such a set. Then for each t, the space # may be decomposed
as H = H\(t) D H(t), the direct sum of closed subspaces invariant under
U(1). (U)o y0) =1, 6(U(1) e y) = o(UN)Na 1. If 127, T(1, ) maps
Hi(t) into H,(2), and is a 1:1 map onto #,(t) if 0¢ a,.
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Let e*™ =sup{|ul|, uco,}; then for any >0, there exists K,>0 such
that

I7(z,7) Pl < K.e¥ 2= |||,

for t =1 and @ € H (7).

Now suppose 0¢c,, and let ¢*™ =inf{|u|, u€a,}>0. Then T(t, 1) D,
@ e H, (1), may be defined also for t <1, still satisfying (a) of Theorem 2.2,
and for @ € (), and ¢ >0 and sufficiently small,

I7(r, 1) P <K e~ @, 1<,

In fact, provided there is a path I in the complex plane, disjoint from a,,
Joining 0 to oo, we have a kind of Floquet representation. There exists a
Jamily of bounded invertible operators E(t). (1) = H#(t) for all t with
E(t+ 2n)= E(2), E(ty) =1, and a bounded operator C on #,(t,) with spec-
trum o(C)=(1/2n)In o, and for @€ #,(t) and all t, 1,

T(t, 1) @ = E(t) e~ DE~ (1) .

4. PERTURBATION OF SPECTRAL OPERATORS—
THE FREE STREAM PROBLEM

With conditions (2.4)-(2.7) one is led to consider (3.14) in the form

d
Mgf-+ (Qo—Po(1)) ¢+ (0, — Py(1)) ¢+ AMg =0, (4.1a)
where
Qod=4qop=[R™(=D*+a*)* +vo(~D*+0a?) D] §, pdmn Q,
(4.1b)
Po(t) ¢ = pop = —ia[(uo+u e")(—D*+a?)] ¢, ¢ edmn P(2),
(4.1¢c)
and
Q:1=0-0Qy  Pi()=P(1)— Pol2). (4.1d)

The observation of interest is that the operator Q — P(¢) is a relatively
compact perturbation of Q,— Py(z) [8]. This kind of perturbation leaves
the essential spectrum of the operator unchanged and hence the deter-
mination of the essential Floquet spectrum is rendered more simple. The
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actual computation is made by determining the spectrum for the “free
stream” problem

S (=4, (4.2a)

where from (3.4)

0 ©
($:000 0= =5 000~ [ o= po) 870, £ 0 )
0 (4.2b)

{edmn S, =dmn S.

The computation here is based on a knowledge of the steady case so that
(4.2a) is obtained from (see Appendix Eq. A.2)

2 ¥ (o= Bt L+ AL =0 (43)

as

fid—f+ [R™Y(=D*+a*)+voD +ia(ug+ u; ")} { + AL =0. (44)

It is useful to define the operator N, where dmn N=dmn 4 and
N{=[R Y(—-D*+a*)+vyD+ioaug}{, (edmnAN. (4.5)

The Green’s function G(y, ¢, 1, 1;4) for (4.4) is known to satisfy [13,
p. 282]

dG A

E+(iozule"+N+ AG= —6(t—1)d(y— &), (4.6a)
with

G(y, ¢, 0,71, 4)=G(y, &, 2m, 75 4). (4.6b)

The operator N, whose spectral resolution is known [8, Sect.2(c)] is
taken as constant in this calculation. The kernel is

G(y ¢ i A)=K(t, t; e ™M+t~ 1)+ n(t—1)18(y— &), (4.7a)
where
K(t,7; A) = {exp[au,(e" — ") + (N + 1)(t —1)]}/(1 —e"¥*+¥)  (4.7b)
and
nt—1)=1, t>1,

4.7¢c
=0, t<t. ( )
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The spectral representation for N is

1
By=8)= =59 h(y.Gy)em =, (48)

where I is a contour enclosing the branch cut in A(y, &), the Green’s
function for the resolvent of N [8, Eq. (2.39b)]. This branch cut is the con-
tinuous (essential) spectrum of N; in fact the spectrum of N consists only of
a continuous part. Thus if in (4.8) one sets

y=R™ Y@ +a®+ R4 +ixRu,), O0<w<oo, (4.9)

the spectrum of N is swept out [8, Eq.(2.36)]. Then the kernel of the
resolvent of S, (13, p.286] is

explou,(e” —e")] A=)
2mi rl —e iy + )

x [e—Zn(y+l),,’(T_ H+n(t—1)]h(y, & v)dy, (4.10)

since N is a spectral operator [8, Theorem 2]. The spectrum is given by the
branch poles in the denominator, where —2n(y+ A)=2nzni and n is any
integer. Hence the spectrum of S| is the union of a denumerably infinite set
of parallel halflines given parametrically by

G(y3 é) Z ‘[;A): -

A= —y—ni= ~R ™ Yw?+ o’ + R*%/4 + iaRuy + Rni),
n=0, +1, +2,.,0<w <. (411)

From Definition 3.8, it follows that each of the halflines in (4.11) is related
to a spectral set for N, that is o, = e***. This is because of the fact that N is
a spectral operator. Furthermore, 0¢ o, for any n, so a path from 0 to «©
may be chosen disjoint from each of the ¢,,. In the light of Theorem 3.9, we
have a kind of Floquet representation. This is of great interest theoretically,
and relates to completeness. Of practical interest is the point in the Floquet
spectrum farthest to the right. According to the definition of the Floquet
parameter in {1.2), the rays (4.11) all lie in the “stable” half of the complex
plane, Re 4 < 0. The spectrum of L will consist of a continuous (essential)
spectrum, identical to that of S;, and a point spectrum, ie., eigenvalues
from which any instabilities in the periodic flow can be determined.

5. CONCLUDING REMARKS

The Floquet representation which is frequently used for confined flows is
justified for boundary layer flows as well. In the case of boundary layers the
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Floquet spectrum is part continuous and part discrete. However all
instabilities are associated with the discrete part which can only be deter-
mined by the complete profile and only accurately with the use of a com-
puter as well. The techniques for these types of calculations are presented
elsewhere [3].

Other flows which would fall under this type of analysis would be
oscillatory jets and shear layers and the oscillatory Ekman layer. This last
flow is of particular interest because like the oscillatory asymptotic suction
profile it satisfies the Navier-Stokes equations.

APPENDIX: THE OPERATOR A, (2.15b)-(2.16) Is SECTORIAL

Explicit calculations are to be made in this section. To facilitate this, the
inner product used is

L@y =] e "B B(3) (Ada)

for ¥, ® € #,. This differs from (2.8b), but has the advantage that all
calculations are explicit. However, from the assumed conditions on u(y)
(A.1a) converges if and only if (2.8b) converges. Of course, if v(y)=uv,,
then the two integrals are the same. The whole theory may also be perfor-
med in a space J# with inner product (A.1a) and such that

%:{QleARuoyh(pe’%[O’oo)}. (A]b)

Then 4, and % are virtually equivalent. For practical purposes one or the
other may be preferred. The operator A is given explicitly as

AZ={R™"(=D*+a*)* + [v(y)(—D*+a*)+v"(y)] D} M'Z, Zedmn A.

(A2)
The operator will be written as the sum of two operators A =A4,+ 4,,
where A, is a small perturbation of a sectorial operator 4,.

LEMMA A.l. Let A, be the operator such that

AoZ={R Y(=D*+a*)*+vo(—D*+o*) D} M'Z

A.3)
={R (—-D*+a*)+v,D}Z,  ZedmnA,=dmn 4. (

Then Aqis sectorial in # =mg M N #;=1ng M. (Note that if o> Ruvy/2,
mg M =3,[8])

640/42/4-8
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Proof. 1t will be shown that A, satisfies the conditions of Definition 2.1
in . It is clear that 4, is closed in 5. The domain of 4, (2.16) is dense in
mg M since dmn A4, is dense in the orthogonal complement of nul M*.

Next, it must be shown that (2.18) holds for 4,. The construction of the
resolvent (4,— 1)~ " has been performed elsewhere [8] and in the present
notation is given by

(A= D)7 f = hp, £ 1) €0~ 021(6) d (A4)

for ferng M, with

e~ y=¢l (r+v)e—r(y+§) e VeV
h(y, é;l)=R|: 2r 2r(r—v)  r—v ]’ (A-52)
where
v=—Ru,/2 +ua (A.5b)
and
r=+/R(@*/R+ Rv¥/4— ) (A.5¢c)

is the positive square root. The kernel of the operator can have poles only
at r=0 and r=v. However a consideration of the limits lim, o A(y, &; 4)
and lim, _, , A(y, & A) shows these limits to be finite. Thus, the resolvent has
no poles and A4, has no eigenvalues. Hence g ,(A4,) is empty. There is a con-
tinuous spectrum o (4,)={AeR |1 = «*/R+ Rv}/4}, lying along a por-
tion of the real line since # has a branch point at A= a?/R + Rv3/4. Thus in
(2.18a) it suffices to take a =a*/R + Rv3/4 and 6 any value in (0, n/2).

Finally, it is shown that (2.18b) holds. For fe mgM and 1€ p(4,), from
(A.4) and (A.5a),

o —rly—¢&l
(Ao—i)71f=ReR”°y/2j e Roe2| & ’
0 2r

(r+v)e7r(y+é) e—_rye—V§

2(r—v)  r—v ]f(f)df- (A.6)

Since ferng M, f 1 nul M*, so the third term vanishes after integration
over £. Moreover, we have the bound

-1
I Ao—2)~ ' = sup WAoZh S (A7)
SfemgM ”f”
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Define
Re-rly—fl
hi(y, & M=T (A.8a)
) B (r+v)e"(y+é) e-rye—vé:l
hZ(y’ é’ A)_R[ 2r(r—v) r—v (A.Sb)

Thus % =h,+ h, consists of two parts. The first of which #,, is not a
Hilbert-Schmidt kernel, even for Rer > 0. However,

R2—e""*%7) 2R

[ (& Dl dy=

Irir+7) T rl(r+7)
cosec(6/2) o
< =
=T —al (A.9a)
£e [0, ), A€ A,p. Similarly,
[ Ity & 1 de < -2 (A9D)
o 1 s o = Il—al’

y€[0, w), Ae 4,4. Thus,

[ nyemeo2pe) az)

[ 2y1/2
= {f dy e vy }
0

" ® O e —— 1/2
={L dyfo ml, ﬁ;A)f({)e—Rvoc/zL h(y, z; l)f(z)e‘R”"”zdz}

| (& 2y emr 00

</l (ITC—"J;) (A.10)

The last inequality follows from Fubini’s theorem and (A.9). Though A,
was not, A, is a Hilbert-Schmidt kernel, when v>0 and Rer>0.If v < 0,
h, is not Hilbert-Schmidt, but the second term in A, may be ignored since
(from the assumed conditions on f) after integration over &, its con-
tribution to (A.6) vanishes, while the first term in A, is amenable to the
analysis to follow. When v £ 0; let

{r+v) .

Ra(, & ) =50

“rly+d), (A.11)
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Then
“ [ ka0, &2y emsr=0e) e “

_ ” [ Rt & iy ey ae ”

w 2v1/2
=“ dy e =Ko }
é\/j |f(c)|2e~'“°fdé\/jo j ha(y, & A)|2 dy de

(by Schwarz’s inequality and Fubini’s theorem)

11 (5 )= 11 (520 (A12)

20r|(r+7)
for AeAd,g, v<0. The case v>0 is not troublesome since we have
explicitly

\/ff A9, & 2 dy de

B R lr+v> (r+7), o |72
‘2|r|(r+r')|r—v|[ 7t I"—(r“)]

5R/4v*  as r—v, when A(v)eA,,. (A.13a)

Jow By, & ) R0 =E02(¢) gt

r+v
r—v

Consequently,

\/f f &) dy dE < MC - (A.13b)

for Ae 4,4, v>0. Together conditions (A.10), (A.12), (A.13b) give

C
|A—al’

I(Ao—4) "1 = i

That A = A,+ A, is sectorial is a consequence of Theorem A.2.

THEOREM A2 [7, p.19]. Suppose A, is a sectorial operator and
lAg(A—Ag) ™'l € C' for |arg A| = O, |A| = wo for some positive constants
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Uo, C', and 6, < m/2. Suppose also Ay is a linear operator with dmn 4,>
dmn A,

14, Dl £ &ll4o@] +x 1D, (A.14)

for all ¢ e dmn Ay; ¢ and x are positive constants with eC' < 1. Then Ay+ A,
is sectorial.

When (A.14) -holds A, is a relatively bounded with respect to A,
Ay-bounded [11, p. 190], we have explicitly that
A Z=[(v(y)— Vo) D+v"(y) DM'] Z, Zedmn 4. (A.15)

The term v"(y) DM represents a bounded operator which is 4,-bounded
with ¢=0. The term (v(y)—vo) D is Ag-bounded for every ¢>0 [11,
p. 192]. Thus (A.14) will hold and eC’ <1 is true if C’ exists. The existence
of C’ follows from noting that

1Ao(do—A) " fll= NI+ MAo—A) TSI S NSI+IA I (Ao—2) 7 [l

< (142 s (A16)

based on previous calculations. Thus for |4| sufficiently large, |arg A| = 6,
lAg(A—Ag) ™| £ C', and A= Ay+ A, is a sectorial operator.
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